Процесс оплодотворения и его механизмы. Механизм оплодотворения и зачатия, его этапы. Ранние этапы развития зародыша. Бластула. Гаструла

Механизмы оплодотворения

Процесс оплодотворения у животных можно разделить на три фазы. Первая фаза характеризуется сближением сперматозоида с яйцеклеткой до их контакта. В эту фазу осуществляются дистантные взаимодействия между половыми клетками. Вторая фаза начинается с того, что сперматозоид прикрепляется к поверхности яйцеклетки. В это время наблюдаются контактные взаимодействия между половыми клетками. Третья фаза процесса оплодотворения начинается после проникновения сперматозоида в яйцо и завершается объединением ядер мужской и женской половых клеток. Эта фаза характеризует взаимодействие внутри яйца.

Дистантные взаимодействия между половыми клетками

Дистантные взаимодействия обеспечиваются рядом неспецифических факторов, среди которых особое место принадлежит химическим веществам, которые вырабатываются половыми клетками. Известно, что половые клетки выделяют гамоны или гормоны гамет. Гамоны, которые вырабатываются яйцеклетками, называют гиногамонами, а спрематозоидами - андрогамонами. Женские половые клетки выделяют две группы гамонов: гиногамоны I и гиногамоны II, оказывающие влияние на физиологию мужских половых клеток. Сперматозоиды вырабатывают андрогамоны I и II.

Некоторые из этих химических веществ направлены на повышение вероятности встречи сперматозоида с яйцеклеткой. Известно, что движение сперматозоида к яйцу осуществляется через посредство хемотаксиса - движение сперматозоидов по градиенту концентрации некоторых химических веществ, выделяемых яйцеклеткой. Хемотаксис достоверно показан для многих групп животных, особенно беспозвоночных: моллюсков, иглокожих и полухордовых. Хемотактические факторы выделены из яйцеклеток морских ежей: у одних видов - это пептид, состоящий из десяти аминокислот, и назван сперактом, у других видов - пептид состоит из четырнадцати аминокислот и, получил название резакт. При добавлении экстрактов этих веществ в морскую воду, сперматозоиды соответствующего вида начинают двигаться вверх по градиенту их концентрации.

В движении сперматозоидов млекопитающих по верхним отделам яйцевода существенное значение имеет явление реотаксиса - способность двигаться против встречного течения жидкости яйцевода.

После того, как сперматозоид пройдет сквозь защитные оболочки яйца и вступит в контакт с его плазматической мембраной, начинаются контактные взаимодействия между половыми клетками, которые приведут к проникновению сперматозоида в цитоплазму яйца.

Контактные взаимодействия между половыми клетками

Контакт сперматозоида с мембраной яйцеклетки приводит к активации половых клеток. Реакция активации связана со сложными морфологическими, биохимическими и физико-химическими изменениями в половых клетках. Активация мужской половой клетки, в первую очередь связана с акросомной реакцией, а женской - с кортикальной реакцией.

Акросомная реакция характеризуется быстрыми изменениями в акросомном аппарате головки сперматозоида, сопровождающимися высвобождением заключенных в ней спермолизинов и выбрасыванием акросомной нити в сторону поверхности яйца.

Рассмотрим общую схему акросомной реакции у представителей разных групп морских беспозвоночных - иглокожих, кольчатых червей, двустворчатых моллюсков, кишечно-дышащих и др.

На вершине головки сперматозоида, плазматическая мембрана и, прилежащая к ней часть мембраны акросомного пузырька, растворяются (лизируются). Свободные края обеих мембран сливаются между собой в единую мембрану. Из обнажившейся акросомы выходят спермолизины в окружающую среду и приводят к растворению яйцевых оболочек в месте контакта со сперматозоидом. После этого внутренняя мембрана акросмного аппарата выпячивается наружу и образует вырост в виде трубочки (акросомная нить). Акросомная нить удлиняется, проходит через разрыхленную область дополнительных яйцевых оболочек и вступает в контакт, с плазматической мембраной яйцеклетки. В области контакта акросомной нити с поверхностью яйца плазматические мембраны сливаются и содержимое акросомной трубочки (нити) соединяется с цитоплазмой яйцеклетки. В результате слияния мембран образуется цитоплазматический мостик. Чуть позже по цитоплазматическому мостику в цитоплазму яйца перейдут ядро и центриоль сперматозоида. Акросомная реакция завершается встраиванием мембраны сперматозоида в мембрану яйцеклетки. С этого момента сперматозоид и яйцеклетка являются уже единой клеткой (Рис.7, 8, 9.).

Рис.7. Акросомная реакция сперматозоида: А - В - слияние наружной мембраны акросомы и мембранысперматозоида. Излияние содержимого акросомного пузырька; 1 - мембрана акросомы; 2 - мембрана сперматозоида; 3 - глобулярный актин; 4 - ферменты акросомы; Г - Д - полимеризация актина и образование акросомного выроста; 5 - биндин; 6 - вырост акросомы; 7 - актиновые микрофиломенты; 8 - ядро сперматозоида. (по Голиченкову)

При общем сходстве акросомной реакции, у этих животных между ними имеются и определенные различия. Так, у иглокожих в отличие у червей и моллюсков в акросомном аппарате не содержатся литические ферменты. У большинства изученных животных образуется одна акросомная нить, а у некоторых червей - несколько таких нитей.

Рис.8. Последовательность акросомной реакции у морского ежа. (по Голиченкову)

При оплодотворении у позвоночных животных также происходит акросомная реакция. У низших позвоночных (миноги, и осетровые рыбы), она во многом сходна с акрсомной реакцией спермиев беспозвоночных животных.

Рис.9. Схема процессов, происходящих при взаимодействии мембран яйцеклетки и сперматозоида в ходе оплодотворения (по Гилберт).

У акуловых рыб, рептилий и птиц, яйца которых одеты плотными оболочками, соединение гамет происходит раньше, чем эти оболочки сформируются. У этих животных акросома продолжает выполнять свою первоначальную роль и, хорошо развита.

Акросомная реакция у млекопитающих отличается от такой реакции у ьеспозвоночных и низших позвоночных. В спермии млекопитающих акросомная реакция протекает без образования акросомного выроста, Приблизившись к поверхности яйца, спермий сливается с его плазматической мембраной боковой поверхностью головки.

У насекомых и высших рыб соединение половых клеток происходит после того, как полностью образуются плотные дополнительные яйцевые оболочки. В этих случаях сперматозоид проникает в яйцо через микропиллярные каналы и соединение гамет происходит без участия акросомы.

Активация яйца. Кортикальная реакция. После того, как мужская половая клетка прикрепится к поверхности яйца и ее акросомная нить вступит в контакт с поверхностью ооплазмы, происходит активация яйцеклетки. Активация яйца связана со сложными изменениями самых разных сторон его деятельности. Наиболее ярким внешним проявлением активации являются изменения поверхностного слоя ооплазмы, получившие название кортикальной реакции (Рис. 10).


Рис.10. Кортикальная реакция в яйце морского ежа А-приближение спермия к яйцу; Б-Г-последовательные стадии кортикальной реакции; показаны волна выделения содержимого кортикальных гранул, распространяющаяся от места проникновения спермия, отделение оболочки и образование перивителлинового пространства, формирование гиалтнового слоя; гс-гиалиновый слой; жо-желточная о болочка кг-кортикальная гранула; оо-оболочка оплодотворения пм-плазматическая мембрана; пп-перивителлиновое пространство, заполненное перивителлиновой жидкостью (по Гинзбург).

Рассмотрим последовательные стадии кортикальной реакции на примере наиболее полно, изученных яйцеклеток морского ежа. Кортикальная реакция начинается с того, что мембрана, ограничивающая каждую кортикальную гранулу, слипается с плазматической мембраной яйца. В этом месте гранулы открываются, и их содержимое изливается в желточную оболочку. Процесс секреции содержимого кортикальных гранул начинается от места прикрепления сперматозоида и волнообразно распространяется во все стороны до тех пор, пока не охватит всю поверхность яйца. Часть выделенного содержимого кортикальных гранул оводняется и растворяется, образуя перивителлиновую жидкость, которая оттесняет желточную оболочку от плазмолеммы яйца, приводя к увеличению объема перивителлинового пространства. Другая часть содержимого кортикальных гранул сливается с желточной оболочкой, которая при этом утолщается и преобразуется в оболочку оплодотворения. Часть кортикальных гранул, не участвующих в образовании оболочки оплодотворения, превращаются в плотный слой, называемый гиалиновым слоем, расположенным над плазматической мембраной. После того, как сформируется оболочка оплодотворения, другие сперматозоиды лишаются возможности проникнуть в ооплазму яйца.

В последние годы был изучен химический состав содержимого кортикальных гранул. Показано, что содержимое кортикальных гранул содержит следующие вещества: а) протеолитический фермент (актеллиновая деламиназа), разрывающий связи между клеточной оболочкой и плазматической мембраной яйца; б) протеолетический фермент (сперм-рецепторная гидролаза), который освобождает осевшую на желточной оболочке сперму; в) гликопротеид, втягивающий воду в пространство между желточной оболочкой и плазматической мембраной, вызывая их расслоение; г) фактор, способствующий образованию оболочки оплодотворения; д) структурный белок гиалин, участвующий в образовании гиалинового слоя.

Каково биологическое значение кортикальной реакции?

Во-первых, кортикальная реакция является тем механизмом, который защищает яйцо от проникновения сверхчисленных сперматозоидов.

Во-вторых, образующаяся в результате кортикальной реакции перивителлиновая жидкость, служит специфической средой, в которой протекает развитие зародыша.

При активации яйца наблюдаются и другие изменения самых разных сторон его деятельности.

Во-первых, снижается тормоз, который блокировал мейоз и, ядерные преобразования продолжаются с той самой стадии, на которой они остановились к моменту выхода яйца из яичника.

Во-вторых, наблюдается серия биохимических изменений, сопровождаемых усилением углеводного обмена, повышением синтеза липидов и белков.

В-третьих, резко возрастает проницаемость клеточной мембраны для ионов натрия и калия.

События, происходящие в яйце после проникновения сперматозоида

После того, как плазматическая мембрана акросомной нити спермия сливается с плазматической мембраной яйца, спермий утрачивает свою подвижность и его вовлечение внутрь яйца происходит благодаря действию сил, исходящих из активированного яйца. Обычно сперматозоид втягивается в ооплазму вместе с хвостом, но иногда хвостовой отдел отбрасывается. Однако и в тех случаях, когда жгутик проникает в яйцо, он отбрасывается и рассасывается.

Высоко-конденсированное ядро сперматозоида начинает набухать, хроматин разрыхляется и ядро превращается в своеобразную структуру, называемым мужским пронуклеусом.

Аналогичные изменения происходят и в ядре яйцеклетки, в результате чего образуется женский пронуклеус. В период формирования пронуклеусов, вдоль хромосом происходит репликация ДНК. В дальнейшем пронуклеусы начинают перемещаться к центру яйцеклетки. Ядерные оболочки, окружающие каждого из пронуклеусов разрушаются, пронуклеусы сближаются и происходит кариогамия. Кариогамия - это последняя стадия оплодотворения. При объединении пронуклеусов образуется ядро с диплоидным набором хромосом. Затем хромосомы занимают экваториальное положение, и наступает первое деление зиготы.

Ооплазматическая сегрегация. После проникновения сперматозоида начинаются интенсивные перемещения цитоплазмы яйцеклетки (ооплазмы). При этом происходит расслоение, отмешивание различных составных частей ооплазмы, что обозначается как ооплазматическая сегрегация. В ходе этого процесса намечаются основные элементы пространственной организации зародыша. Поэтому данный этап развития называют также проморфогенезом: имеется в виду, что в это время как бы расставляются вехи для будущих морфогенетических процессов.

Моно- и полиспермия

Проникновение в яйцеклетку одного сперматозоида, получило название, физиологической моноспермии. Моноспермия присуща всем группам животных с наружным осеменением и многим животным с внутренним осеменением (тем, которые подобно, млекопитающим имеют яйцеклетки небольшого размера).

У других животных, например, у некоторых членистоногих (насекомые), моллюсков (класс брюхоногих), хордовых (акулообразные рыбы, хвостатые амфибии, рептилии и птицы) в яйцеклетку проникает большое количество сперматозоидов. Такое явление получило название физиологической полиспермии. Однако и в этом случае с ядром яйцеклетки соединяется только ядро одного сперматозоида, тогда как остальные разрушаются (рис.11).

Рис. 11. Полиспермия у тритона. А-проникновение спермиев в яйцо на стадии метафазы II деления созревания; Б-синхронные изменения семенных ядер, образование семенных звезд; В-женское ядро соединяется с одним из семенных ядер; Г - Е-синкарион вступает в митоз, сверхчисленные семенные ядра оттесняются в вегетативное полушарие и дегенерируют. Цифры над изображением яиц - время после проникновения спермиев при температуре 23 о (по Гинзбург).

При физиологической моноспермии имеются особые механизмы защиты яйца от полиспермии. Первый механизм связан с изменением мембранного потенциала. Установлено, что в яйцеклетке лягушки, через несколько секунд, после контакта со сперматозоидом заряд мембраны изменяется от -28 до 8 мв и остается положительным в течение 20 мин. Такие же изменения мембранного потенциала были обнаружены в яйцеклетках морского ежа. Оказалось, что положительный заряд мембраны препятствует полиспермии. Другой широко распространенный механизм защиты яйца от проникновения сверхчисленных сперматозоидов связан с образованием оболочки оплодотворения и перивителлиновой жидкости.

Как известно, после достижения половой зрелости у каждой девушки, а затем женщины один раз в месяц происходит . Это довольно-таки сложный физиологический процесс, в ходе которого зрелая яйцеклетка выходит из яичника в маточную трубу. Именно в ней и происходит оплодотворение.

Особенности овуляции

Слияние сперматозоидов с яйцеклеткой происходит в течение двенадцати часов после того, как она выходит в маточную трубу. Время овуляции рассчитать несложно, и одним из самых достоверных методов его определения является , то есть температуры в прямой кишке. Эта процедура должна ежедневно проводиться в течение нескольких месяцев. Температура измеряется в одно и то же время, рано утром, не вставая в постели, с помощи самого обычного градусника.

Если занести данные в график, можно увидеть кривую созревания своей яйцеклетки. Перед началом менструации температура максимальное снижается, а момент овуляции наступает либо в последний день пониженной температуры, либо в первый день ее повышения. Самым благоприятным днем для оплодотворения яйцеклетки является тот, когда наступает овуляция, либо несколько дней до ее начала.

Это объясняется тем, что сперматозоиды, которые попали в полость маточной трубы, остаются жизнеспособными в течение нескольких суток. Зная день наступления овуляции, можно не только зачать ребенка, но также попробовать . Для этого существуют различные и календари зачатия.

Механизм оплодотворения

Оплодотворение яйцеклетки является длительным и сложным механизмом, во время которого происходит соединение мужской и женской половых клеток. Семенная жидкость, которая во время полового акта попадает в женское влагалище, содержит примерно от 60 до 150 млн. зрелых сперматозоидов. За счет того непрерывного сокращения матки, семенная жидкость ей активно захватывается, в связи с чем подвижные сперматозоиды продвигаются в полость матки в течение нескольких минут, а затем достигают дальних отделов маточной трубы, где располагается яйцеклетка.

Несмотря на то, что мужских половых клеток много, они встречают множество препятствий на своем пути (кислая среда влагалища, слизистое содержимое канала шейки матки и так далее), и только один самый быстрый сперматозоид сможет оплодотворить яйцеклетку. Правда, многочисленными исследованиями доказано, что в яйцеклетку могут проникнуть и несколько сперматозоидов, но ядро с наследственной информацией яйцеклетки может соединиться с ядром только одного сперматозоида, в результате чего образуется только один эмбрион. Конечно, бывают случаи, когда в процессе оплодотворения получается несколько эмбрионов, и в итоге рождаются близнецы.

Сперматозоид проходит через прочные оболочки женской клетки благодаря растворению ферментами, которые содержатся в акросомной капсуле его головки. Вступая с контакт с яйцеклеткой, капсула разрывается, и из нее к оболочкам начинает прикрепляться акросомная нить и выделяться вещества, которые разрушают оболочку яйцеклетки. Растворив небольшой участок, акросомная нить проникает вглубь яйцеклетки и плотно соединиться с ее внутренним содержимым. Потом ядро и внутреннее содержимое головки сперматозоида всасывается внутрь женской половой клетки.

Изменения в яйцеклетке

Полное проникновение сперматозоида в женскую половую клетку запускает процесс существенного изменения физиологических процессов в ней. Оболочки яйцеклетки становятся намного более проницаемыми, что очень важно для активного накопления питательных веществ, при помощи которых станет развиваться эмбрион. Начинают более активно вырабатываться белки, кальций и углеводы, впитывается максимальное количество кальция и фосфора - в общем, ведется подготовка к развитию плода.

Наиболее важные и значительные для будущего ребенка события происходят в течение примерно двенадцати часов после проникновения сперматозоида в яйцеклетку. В это время ядра мужской и женской клеток, несущие в себе всю наследственную информацию, соединяются. Образуется новая клетка с полным набором хромосом, из которой потом разовьется эмбрион и в итоге родится новый человек.

Оплодотворение, исходный момент возникновения новой генетической индивидуальности, представляет собой процесс соединения женской и мужской гамет.

В результате оплодотворения возникает одноклеточный зародыш с диплоидным набором хромосом и активируется цепь событий, лежащих в основе развития организма.

Биологическое значение оплодотворения огромно: будучи предпосылкой развития новой индивидуальности, оно вместе с тем является условием продолжения жизни и эволюции вида.

Следует подчеркнуть, что оплодотворение представляет собой не одномоментный акт, но именно процесс, занимающий более или менее продолжительный отрезок времени. Это многоступенчатый процесс, в котором различаются следующие этапы: привлечение сперматозоида яйцом, связывание гамет и, наконец, слияние мужских и женских половых клеток. В научной литературе события, связанные со сближением гамет иногда называют осеменением различая наружное и внутреннее осеменение, в зависимости от того, выводятся мужские половые клетки в окружающую среду или в половые органы женской особи. Наружное осеменение характерно для животных, обитающих в водной среде. Внутреннее осеменение присуще главным образом наземным животным, хотя оно достаточно часто встречается и у обитателей водной среды. Осеменение может быть свободным при котором все области ооцита доступны спермиям, но может быть и ограниченным, когда на поверхности яйцеклетки имеется плотная оболочка с микропиле. При внутреннем осеменении у ряда животных мужские гаметы передаются самкам в виде сперматофоров , особых капсул, содержащих сперматозоиды. Сперматофоры сначала выводятся в окружающую среду, а затем тем или иным способом переносятся в половые пути самки.

Соединение гамет предопределяет возможность кариогамии , или слияния ядер. Благодаря кариогамии происходит объединение отцовских и материнских хромосом, ведущее к образованию генома новой особи. В результате слияния гамет возникает диплоидная зигота, восстанавливается способность к репликации ДНК и начинается подготовка к делениям дробления. Механизмы активации яйца к развитию относительно автономны. Их включение может быть осуществлено и помимо оплодотворения, что происходит, например, при естественном или искусственном девственном развитии, или партеногенезе .

Интерес к проблеме оплодотворения выходит далеко за рамки собственно эмбриологии. Слияние гамет - плодотворно используемая модель для изучения тонких молекулярных и клеточных механизмов специфического взаимодействия клеточных мембран; для изучения молекулярных основ активации метаболизма и пролиферации соматических клеток. Общебиологический интерес представляет и то, что оплодотворение являет собой яркий и, может быть, уникальный пример полного обращения клеточной дифференциации. Действительно, высокоспециализированные половые клетки не способны к самовоспроизведению. Они гаплоидны и не могут делиться. Однако после слияния они превращаются в тотипотентную клетку, которая служит источником формирования всех клеточных типов, присущих данному организму.

История открытия оплодотворения теряется в глубине веков. Во всяком случае, в XVIII столетии итальянский естествоиспытатель аббат Лаццаро Спалланцани (1729-1799) экспериментально доказал, что оплодотворение зависит от наличия спермы, и впервые осуществил искусственное оплодотворение яиц лягушки, смешивая их со спермой, полученной из семенников. Тем не менее смысл происходящих при этом событий оставался неясным практически до последней четверти XIX века, когда Оскар Гертвиг (1849-1922) в конце 1870-х годов, изучая оплодотворение у морских ежей, пришел к заключению, что сущность этого процесса состоит в слиянии ядер половых клеток. Вместе с работами бельгийца Эдуарда ван Бенедена (1883, аскарида), немецкого ученого Теодора Бовери (1887, аскарида), швейцарского зоолога Германа Фоля (1887, морская звезда) исследования О. Гертвига заложили основу современных представлений об оплодотворении. Следует подчеркнуть, что именно эти работы послужили веским основанием для предположения о том, что ядро является носителем наследственных свойств. Именно Т. Бовери (1862-1915) в серии блестящих цитологических исследований обосновал в конце 1880-х годов теорию индивидуальности хромосом и создал основу цитогенетики.

Вскоре после выяснения сущности оплодотворения исследователи сосредоточили внимание на механизмах, лежащих в основе этого процесса. Эта область исследований сохраняет актуальность и в наше время. Пальма первенства в построении теории оплодотворения принадлежит американскому исследователю Франку Лилли (1862-1915). Изучая свойства «яичной воды», т. е. морской воды, в которой некоторое время находились неоплодотворенные яйца морского ежа Arbacia или полихеты Nereis, Лилли обнаружил, что из яиц выделяется вещество, которое обладает способностью склеивать спермин в комки. Наблюдаемая агглютинация оказалась видоспецифичной, и Лилли назвал фактор агглютинации, выделяемый неоплодотворенным яйцом, веществом оплодотворения, или фертилизином (от англ. fertilization - оплодотворение). Суть выдвинутой Лилли теории оплодотворения состоит в признании того, что в периферической области яйца находится фертилизин, который имеет сродство к поверхностным рецепторам спермия (антифертилизин спермия). Благодаря этому сродству фертилизин связывает, согласно Лилли, спермии. Однако, чтобы претендовать на универсальность и объяснить не только механизм соединения гамет, но и причины агглютинации спермиев, возможность предотвращения полиспермии, высокую специфичность процесса оплодотворения и т д., теория фертилизина нуждалась в многочисленных допущениях, под гнетом которых она в конце концов и угасла.

Уже в ходе ранних исследований оплодотворения возникло представление о гамонах - веществах, которые обеспечивают активацию или блокирование отдельных этапов оплодотворения. В соответствии с их происхождением различали гиногамоны, выделяемые яйцеклетками, и андрогамоны, вырабатываемые мужскими половыми клетками. Так, полагали, что гиногамон 1, диффундируя из яйца, активирует движение сперматозоида, преодолевая действие андрогамона 1, который ингибирует движение сперматозоида. Гиногамон 2 - синоним фертилизина, а андрогамон 2 - антифертилизина спермия.

В пятидесятые годы XX столетия идея о взаимодействии фертилизина с антифертилизином трансформировалась в гипотезу специфического фагоцитоза. Согласно этой концепции, наличие на поверхности яйца и спермия взаимодействующих молекул обеспечивает комплементарную реакцию по принципу застежки «молнии», благодаря которой спермий оказывается поглощенным яйцом.

Несмотря на известную умозрительность, эти и многие другие подобные гипотезы о механизмах взаимодействия сперматозоидов и яиц сыграли свою положительную роль, обнаружив, во-первых, существование целого семейства специфических молекул на поверхности взаимодействующих гамет и, во-вторых, положив начало планомерным исследованиям природы этих молекул.

Вторая половина прошлого столетия - период расцвета ультраструктурных и молекулярно-биологических исследований, которые выявили большое разнообразие конкретных форм клеточного взаимодействия при оплодотворении. Стало ясно, что универсальная теория оплодотворения, если и может существовать, то только как свод некоторых самых общих принципов организации этого процесса.

Конкретные механизмы оплодотворения зависят от множества факторов. Достаточно сказать о своеобразии оплодотворения у животных с наружным и внутренним осеменением. Очевидно, что определенные различия процесса оплодотворения обусловлены и тем, что у разных животных проникновение спермия в яйцо происходит на разных этапах оогенеза. У многих аннелид, моллюсков, нематод и ракообразных сперматозоид проникает в ооциты первого порядка на стадии профазы. У других кольчатых червей, моллюсков и у насекомых - на стадии метафазы первичного ооцита. Для многих позвоночных характерно осеменение на стадии метафазы вторичного ооцита. У некоторых кишечнополостных и у морских ежей оплодотворение происходит на стадии зрелого яйца уже после завершения делений созревания и выделения направительных, или редукционных телец. Наконец, нельзя не вспомнить и разнообразие типов сперматозоидов, среди которых имеются жгутиковые формы и спермин без жгутиков (например, амебоидные спермин нематод), с акросомой и без нее, имеющие акросомную нить и лишенные ее. Естественно, что в каждом таком случае конкретные механизмы, обеспечивающие тонкое взаимодействие между половыми клетками, различаются.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Откопал старый текстик у себя в закромах, решил опубликовать здесь. Не знаю, насколько интересен этот вопрос моей аудитории, но то, что он интересен подавляющему большинству моих друзей и знакомых - это точно. Причем, как оказалось, не просто интересен, а еще и мало понятен. Видимо, в силу того, что с половым воспитанием в нашей стране полный ах.

Зачатие ребенка

Надеюсь, никому не надо объяснять, что непорочного зачатия все же не существует. Зачатию ребенка предшествует половой акт (кстати, по-латыни он называется коитус – coitus). Из-за особенностей строения женских половых путей сперма попадает большей частью в задний свод влагалища (условно можно сказать «ближе к позвоночнику»), где в это время ее уже поджидает так называемая «слизистая пробка» – сгусток слизи, «принимающий» в себя сперму и втягивающийся с нею обратно в матку. Эта пробка выделяется в момент возбуждения женщины, которое сопровождается сокращениями мускулатуры матки и открытием наружного зева ее шейки. Здесь хочу отметить одну занимательную вещь – вы можете сами определить момент появления пробки из шейки матки. Думаю, многие замечали, что во время полового акта зачастую из влагалища женщины доносятся, извините за выражение, «пердящие» звуки. Дамы, бывает, этого смущаются, а зря. Ведь именно такие звуки и говорят о том, что слизистая пробка появилась и готова к приему спермы. Попутно хочу заметить, что в задний свод влагалища попадает только 2-3 мл спермы, остальная часть благополучно вытекает из влагалища.

Строение сперматозоида и яйцеклетки

Давайте немного отойдем от повествования и посмотрим, что представляют собой основные его участники – сперматозоид и яйцеклетка. Яйцеклетка – это одинарная клетка, достаточно крупная. Срок ее жизни – 24 часа с момента выхода из яичника. Сперматозоиды же – «живчики», сохраняют способность к оплодотворению несколько суток (от трех до пяти). И именно из-за таких особенностей наиболее благоприятными сроками оплодотворения являются день овуляции и несколько суток до и после. Причем необходимо еще учесть, что сперматозоиды движутся не так уж и быстро по человеческим меркам – сутки и даже более требуются им, чтобы добраться до цели. На этих принципах основан метод предохранения от беременности. Вы можете и сами определить день овуляции и рассчитать благоприятные дни для наступления беременности с помощью измерения так называемой базальной температуры – температуры в прямой кишке. Во время овуляции она на градус выше нормы. Но этот метод очень ненадежен, так как температура может повышаться из-за множества причин – стрессов, физической активности, различных заболеваний (особенно простудных).

Сперматозоид намного меньше яйцеклетки и в отличие от нее подвижен. Грубо говоря, сперматозоид – это узкоспециализированная клетка, имеющая ядро с хромосомами и жгутик, с помощью которого он передвигается. Причем скорость передвижения по нашим меркам ничтожна – 30-50 мкм/с (один микрометр – одна миллионная доля метра), однако сам сперматозоид тратит очень много энергии для того, чтобы передвигаться с такой скоростью. Как же он находит яйцеклетку? Дело в том, что яйцеклетка выделяет особые вещества, которые «привлекают» сперматозоиды, а сперматозоиды, в свою очередь, обладают хемотаксисом – способность целенаправленно двигаться в направлении «пахнущей» яйцеклетки. Попав в половые пути женщины, сперматозоиды сохраняют способность к оплодотворению в среднем 3-5 суток.

Оплодотворение яйцеклетки

Но вернемся к моменту оплодотворения яйцеклетки. После того, как слизистая пробка втянулась в матку, сперматозоиды продолжают движение уже самостоятельно.

В нормальных условиях примерно через полчаса-час сперматозоиды попадают в матку, а через полтора-два часа – в ампулу маточной трубы, где их уже поджидает яйцеклетка. Хотя нет, не поджидает – ожидания никакого не предусмотрено. Либо яйцеклетка оплодотворяется и дальше по трубам движется уже зародыш, либо неоплодотворенная яйцеклетка погибает.

Конечно, яйцеклетку находят сразу много сперматозоидов. Они внедряются в ее оболочку и своими движениями начинают раскручивать, разрыхляя ее таким образом. А оболочка у нее состоит из нескольких слоев, или зон. Поэтому сперматозоиды вынуждены еще и растворять ее специальными веществами. И ведь насколько интересно все устроено – в сперме миллионы сперматозоидов и только один достигнет в итоге цели. Остальные же просто играют роль помощников – одни гибнут в кислой среде влагалища, тем самым позволяя своим собратьям двигаться буквально по их телам вперед, а другие, раскручивая яйцеклетку и растворяя ее оболочки, помогают единственному призеру попасть внутрь. А вот кто будет тем самым призером – это решает его величество случай. Все спекуляции на тему «вы появились от самого быстрого и сильного сперматозоида» не верны, так как сперматозоиды, достигшие яйцеклетки, все одинаково сильные и быстрые. Просто ваш – самый удачливый.

Как только тот самый удачливый сперматозоид проник внутрь и оплодотворил яйцеклетку, ее оболочка становится невосприимчива к попыткам остальных попасть внутрь. Джекпот выигран, остальные остались не у дел.

Образование и развитие зародыша

После проникновения сперматозоида внутрь яйцеклетки их ядра сливаются и образуют первую клетку будущего организма – зиготу. При этом материнские хромосомы и отцовские образуют полный генный набор будущего организма. В среднем через сутки зигота начинает делиться, двигаясь одновременно по маточной трубе к полости матки. Сначала зигота делится на 2 клетки, потом на 4, затем на 8 и так далее. Ниже на фото как раз и показаны эти стадии. В итоге из одной клетки получаются целые триллионы!

Первые 3-5 суток зародыш получает питание из тех веществ, которые содержались в самой яйцеклетке. Далее она уже имплантируется в матку (в ее внутренний слой – эндометрий) и образует плаценту, питающую будущего ребенка вплоть до момента рождения. Соответственно, примерно через две недели при отсутствии менструации женщина может предположить, что беременна.

Надо отметить, что иногда при овуляции в маточные трубы выходят две яйцеклетки, каждая из которых может оплодотвориться отдельным сперматозоидом. В таком случае получаются разнояйцевые близнецы (яйцеклетку еще называют просто «яйцом», «ovo» по-гречески. Отсюда и пошло слово «овуляция»). Однояйцевые же получаются, соответственно, из одной яйцеклетки, но разделенной в момент первого деления на две самостоятельных зиготы. Поэтому и получается, что однояйцевые близнецы – копия друг друга, а разнояйцевые – нет.

В мире хромосом и генов

Как мы уже выяснили, при зачатии случайным образом закладываются все передающиеся по наследству характеристики ребенка – физические данные, пол, группа крови, цвет глаз, волос и так далее. Причем ребенку генов достается поровну – по 23 хромосомы от отца и матери (гены располагаются в хромосомах). Развитие ребенка во время беременности, в младенчестве, детстве и далее во многом будет подчинено именно этой программе.

Однако только лишь одна пара хромосом определяет пол ребенка. Мужчины имеют пару ХУ, а женщины – ХХ. Это последняя, 23 пара хромосом. Соответственно, выходит, что одна Х-хромосома у будущего ребенка обязательно от матери. Вторая же хромосома зависит от того, какой сперматозоид первым достиг яйцеклетки. Если он нес в себе Х-хромосому – будет девочка (ХХ). Если же У – будет мальчик (ХУ). Причем интересно, что сперматозоиды, несущие Х-хромосому, передвигаются медленнее несущих У-хромосому, но они более живучие. Поэтому если оплодотворение произошло через двое-трое суток после полового акта, то высока вероятность рождения мальчика. Если же позднее – то девочки. На этом основан метод планирования пола будущего ребенка.

Вот вроде и все. Если что-то не понятно или появились вопросы – пишите в комментах.

Оплодотворение - это процесс слияния половых клеток. Образующаяся в результате оплодотворения диплоидная клетка - зигота - представляет собой начальный этап развития нового организма.

Процесс оплодотворения складывается из трех последовательных фаз: а) сближения гамет; б) активации яйцеклетки; в) слияния гамет, или сингамии.

1. Сближение сперматозоида с яйцеклеткой обеспечивается совокупностью неспецифических факторов, повышающих вероятность их встречи и взаимодействия. К ним относят скоординированность наступления готовности к оплодотворению у самца и самки, поведение самцов и самок, обеспечивающее совокупление и осеменение, избыточную продукцию сперматозоидов, крупные размеры яйцеклетки, а также вырабатываемые яйцеклетками и сперматозоидами химические вещества, способствующие сближению и взаимодействию половых клеток. Эти вещества, называемые гамонами (гормоны гамет), с одной стороны, активируют движение сперматозоидов, а с другой - их склеивание. В особой структуре сперматозоида - акросоме -локализуются протеолитические ферменты. У млекопитающих большое значение имеет пребывание сперматозоидов в половых путях самки, в результате чего мужские половые клетки приобретают оплодотворяющую способность (капацитация), т.е. способность к акросомной реакции.

В момент контакта сперматозоида с оболочкой яйцеклетки происходит акросомная реакция, во время которой под действием протеолитических ферментов акросомы яйцевые оболочки растворяются. Далее плазматические мембраны яйцеклетки и сперматозоида сливаются и через образующийся вследствие этого цитоплазматический мостик цитоплазмы обеих гамет объединяются. Затем в цитоплазму яйца переходят ядро и центриоль сперматозоида, а мембрана сперматозоида встраивается в мембрану яйцеклетки. Хвостовая часть сперматозоида у большинства животных тоже входит в яйцо, но потом отделяется и рассасывается, не играя какой-либо роли в дальнейшем развитии.

2. В результате контакта сперматозоида с яйцеклеткой происходит ее активация. Она заключается в сложных структурных и физико-химических изменениях. Благодаря тому что участок мембраны сперматозоида проницаем для ионов натрия, последние начинают поступать внутрь яйца, изменяя мембранный потенциал клетки. Затем в виде волны, распространяющейся из точки соприкосновения гамет, происходит увеличение содержания ионов кальция, вслед за чем также волной растворяются кортикальные гранулы. Выделяемые при этом специфические ферменты способствуют отслойке желточной оболочки; она затвердевает, это оболочка оплодотворения. Все описанные процессы представляют собой так называемую кортикальную реакцию. Одним из значений кортикальной реакции является предотвращение полиспермии, т.е. проникновения в яйцеклетку более одного сперматозоида. У млекопитающих кортикальная реакция не вызывает образования оболочки оплодотворения, но суть ее та же.

У таких животных, как морской еж, костистые рыбы и земноводные, все изменения цитоплазмы сопровождаются видимыми морфологическими перестройками. Эти явления получили название расслоения или сегрегации плазмы. Значение ее для дальнейшего эмбрионального развития будет рассмотрено ниже.

Активация яйцеклетки завершается началом синтеза белка на трансляционном уровне, поскольку мРНК, тРНК, рибосомы и энергия были запасены еще в овогенезе. Активация яйцеклетки может начаться и протекать до конца без ядра сперматозоида и без ядра яйцеклетки, что доказано опытами по энуклеации зиготы.

3. Яйцеклетка в момент встречи со сперматозоидом обычно находится на одной из стадий мейоза, заблокированной с помощью специфического фактора. У большинства позвоночных этот блок осуществляется на стадии метафазы II; у многих беспозвоночных, а также у трех видов млекопитающих (лошади, собаки и лисицы) блок происходит на стадии диакинеза. В большинстве случаев блок мейоза снимается после активации яйцеклетки вследствие оплодотворения. В то время как в яйцеклетке завершается мейоз, ядро сперматозоида, проникшее в нее, видоизменяется. Оно принимает вид интерфазного, а затем профазного ядра. За это время удваивается ДНК и мужской пронуклеус получает количество наследственного материала, соответствующего п2с, т.е. содержит гаплоидный набор редуплицированных хромосом.

Ядро яйцеклетки, закончившее мейоз, превращается в женский пронуклеус, также приобретая п2с. Оба пронуклеуса проделывают сложные перемещения, затем сближаются и сливаются (синкарион), образуя общую метафазную пластинку. Это, собственно, и есть момент окончательного слияния гамет - сингамия. Первое митотическое деление зиготы приводит к образованию двух клеток зародыша (бластомеров) с набором хромосом 2n2c в каждом.

23. Эмбриональное развитие организма. Дробление. Типы дробления, Гаструляция, способы гаструляции.

Дробление

Сущность стадии дробления. Дробление - это ряд последовательных митотических делений зиготы и далее бластомеров, заканчивающихся образованием многоклеточного зародыша - бластулы. Первое деление дробления начинается после объединения наследственного материала пронуклеусов и образования общей метафазной пластинки. Возникающие при дроблении клетки называют бластомерами (от греч. бласте-росток, зачаток). Особенностью митотических делений дробления является то, что с каждым делением клетки становятся все мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объемов ядра и цитоплазмы. У морского ежа, например, для этого требуется шесть делений и зародыш состоит из 64 клеток. Между очередными делениями не происходит роста клеток, но обязательно синтезируется ДНК.

Все предшественники ДНК и необходимые ферменты накоплены в процессе овогенеза. В результате митотические циклы укорочены и деления следуют друг за другом значительно быстрее, чем в обычных соматических клетках. Сначала бластомеры прилегают друг к другу, образуя скопление клеток, называемое морулой. Затем между клетками образуется полость - бластоцель, заполненная жидкостью. Клетки оттесняются к периферии, образуя стенку бластулы - бластодерму. Общий размер зародыша к концу дробления на стадии бластулы не превышает размера зиготы.

Главным результатом периода дробления является превращение зиготы в многоклеточный односменный зародыш.

Морфология дробления. Как правило, бластомеры располагаются в строгом порядке друг относительно друга и полярной оси яйца. Порядок, или способ, дробления зависит от количества, плотности и характера распределения желтка в яйце. По правилам Сакса - Гертвига клеточное ядро стремится расположиться в центре свободной от желтка цитоплазмы, а веретено клеточного деления - в направлении наибольшей протяженности этой зоны.

В олиго- и мезолецитальных яйцах дробление полное, или голобластическое. Такой тип дробления встречается у миног, некоторых рыб, всех амфибий, а также у сумчатых и плацентарных млекопитающих. При полном дроблении плоскость первого деления соответствует плоскости двусторонней симметрии. Плоскость второго деления проходит перпендикулярно плоскости первого. Обе борозды первых двух делений меридианные, т.е. начинаются на анимальном полюсе и распространяются к вегетативному полюсу. Яйцевая клетка оказывается разделенной на четыре более или менее равных по размеру бластомера. Плоскость третьего деления проходит перпендикулярно первым двум в широтном направлении. После этого в мезолецитальных яйцах на стадии восьми бластомеров проявляется неравномерность дробления. На анимальном полюсе четыре более мелких бластомера - микромеры, на вегетативном - четыре более крупных - макромеры. Затем деление опять идет в меридианных плоскостях, а потом опять в широтных.

В полилецитальных яйцеклетках костистых рыб, пресмыкающихся, птиц, а также однопроходных млекопитающих дробление частичное, или мероб-ластическое, т.е. охватывает только свободную от желтка цитоплазму. Она располагается в виде тонкого диска на анимальном полюсе, поэтому такой тип дробления называют дискоидальным.

При характеристике типа дробления учитывают также взаимное расположение и скорость деления бластомеров. Если бластомеры располагаются рядами друг над другом по радиусам, дробление называют радиальным. Оно типично для хордовых и иглокожих. В природе встречаются и другие варианты пространственного расположения бластомеров при дроблении, что определяет такие его типы, как спиральное у моллюсков, билатеральное у аскариды, анархичное у медузы.

Замечена зависимость между распределением желтка и степенью синхронности деления анимальных и вегетативных бластомеров. В олиголецитальных яйцах иглокожих дробление почти синхронное, в мезолецитальных яйцевых клетках синхронность нарушена после третьего деления, так как вегетативные бластомеры из-за большого количества желтка делятся медленнее. У форм с частичным дроблением деления с самого начала асинхронны и бластомеры, занимающие центральное положение, делятся быстрее.

Гаструляция

Сущность стадии гаструляции заключается в том, что однослойный зародыш - бластула - превращается в многослойный - двух- или трехслойный, называемый гаструлой (от греч. гастер - желудок в уменьшительном смысле).

У примитивных хордовых, например у ланцетника, однородная однослойная бластодерма во время гаструляции преобразуется в наружный зародышевый листок -эктодерму -и внутренний зародышевый листок - энтодерму. Энтодерма формирует первичную кишку с полостью внутри-гастроцель. Отверстие, ведущее в гастроцель, называют бластопором или первичным ртом. Два зародышевых листка являются определяющими морфологическими признаками гаструляции. Их существование на определенной стадии развития у всех многоклеточных животных, начиная с кишечнополостных и кончая высшими позвоночными, позволяет думать о гомологии зародышевых листков и единстве происхождения всех этих животных.

У позвоночных помимо двух упомянутых во время гаструляции образуется еще третий зародышевый листок - мезодерма, занимающая место между экто- и энтодермой. Развитие среднего зародышевого листка, представляющего собой хордомезодерму, является эволюционным усложнением фазы гаструляции у позвоночных и связано с ускорением у них развития на ранних стадиях эмбриогенеза. У более примитивных хордовых животных, таких, как ланцетник, хордомезодерма обычно образуется в начале следующей после гаструляции фазы - органогенезе. Смещение времени развития одних органов относительно других у потомков по сравнению с предковыми группами является проявлением гетерохронии. Изменение времени закладки важнейших органов в процессе эволюции встречается не редко.

Процесс гаструляции характеризуется важными, клеточными преобразованиями, такими, как направленные перемещения групп и отдельных клеток, избирательное размножение и сортировка клеток, начало цитодифференцировки и индукционных взаимодействий. Перечисленные клеточные механизмы онтогенеза подробно разбираются в гл. 8.2.

Рис. 7.3. Презумптивные зачатки, гаструляция и нейруляция у ланцетника.

А - презумптивные зачатки на стадии бластулы (вид снаружи) и ранней гаструлы (вид на срезе); Б - поздняя гаструла и нейруляция на сагиттальном (левый ряд) и поперечном (правый ряд) разрезах; В - пластическая модель зародыша в конце периода нейруляции:

1-анимальный полюс, 2-вегетативный полюс, 3-бластоцель, 4-гастроцель, 5-спинная и брюшная губы бластопора, 6 - головной конец зародыша, 7- модулярная пластинка, 8 - хвостовой конец зародыша, 9-спинная часть мезодермы, 10-полость вторичной кишки. 11 -сегментированные сомиты, 12-брюшная часть мезодермы; а, б, в, г, д - обозначения презумптивных и развивающихся органов: а - эктодерма кожная, б - нервная трубка, в - хорда, г - эндотерма, эпителий кишки, д -мезодерма


Похожая информация.