Что такое нормальное распределение в психологии. Распределение признака. Параметры распределения. Признаки и переменные

Распределением называется закономерность встречаемости признака и разных его значений. Статистическое распределение может иметь графическое представление в виде полигона частот (ломаной линии, соединяющей точки; гистограммы; графика). Кривые распределения бывают одновершинные и многовершинные. Оценка типа распределения выступает в форме проверки нормальности эмпирического распределения. Форма распределения является некоторой обобщенной характеристикой выборки.

Распределение частоты полученных результатов в виде графиков и гистограмм дает важную предварительную информацию о форме распределения признака, а именно о том, какие значения встречаются реже, какие чаще, насколько выражена изменчивость признака. Выделяют следующие типичные формы эмпирического распределения.

Равномерное распределение - когда все значения встречаются с одинаковой частотой.

Симметричное распределение - когда с одинаковой частотой встречаются крайние значения признака.

Асимметричное распределение - может быть левосторонним (когда преобладает частота малых значений) или правосторонним (когда преобладает частота больших значений).

Нормальное распределение - идеальный стандарт распределения, когда крайние значения встречаются редко и частота встречаемости постепенно повышается от крайних к серединным значениям признака.

Нормальный закон распределения играет важнейшую роль в применении математико-статистических методов в психологии. Он лежит в основе измерений, разработки тестовых шкал, методов проверки гипотез.

Нормальное распределение - вид распределения переменных, характеризуемый тем, что крайние значения признака в нем появляются достаточно редко, а значения, близкие к средней величине, - достаточно часто. Нормальным такое распределение называется потому, что оно очень часто встречалось в естественнонаучных исследованиях и казалось «нормой» всякого массового проявления признаков. Это распределение следует закону, откры-

Рис. 1.

тому в разное время: Муавром в 1733 г. в Англии, Гауссом в 1809 г. в Германии и Лапласом в 1812 г. во Франции. График нормального распределения представляет симметричную унимодальную колоколообразную кривую (верхняя часть колокола), осью которой является вертикаль (ордината), проведенная через точку 0.

Закон нормального распределения имеет следующую формулировку: «Если индивидуальная изменчивость некоторого свойства есть следствие действия множества причин, то распределение частот для всего многообразия проявлений этого свойства в генеральной совокупности соответствует кривой нормального распределения» (Наследов А. Д., 2007, с. 51).

Чтобы установить, подчиняется ли эмпирическое распределение изучаемой величины нормальному закону, необходимо сопоставить сведения о свойствах этой величины и условиях ее изучения со свойствами функций нормального распределения. Это сопоставление вначале является качественным, а потом осуществляется специальными количественными методами (Сыромятников И. В., 2005).

Основой качественного сопоставления является такое условие появления нормального распределения, как действие на изучаемую случайную величину большого числа независимых, одинаковых случайных факторов.

Подтверждение нормального закона распределения будет означать, что полученная эмпирическая кривая не требует нормализации. Распределение можно рассматривать как репрезентативное по отношению к генеральной совокупности и на его основе определить репрезентативные оценочные нормы.

Если распределение отличается от нормального, то это означает, что либо выборка нерепрезентативна генеральной совокупности, либо измерения произведены не в шкале равных интервалов.

Наиболее важным общим свойством разных кривых нормального распределения является одинаковая доля площади под кривой между одними и теми же двумя значениями признака, выраженными в единицах стандартного отклонения.

Для любого нормального распределения существуют следующие соответствия между диапазонами значений и площадью под кривой:

М ± о соответствует 68 % (точно - 68,26 %) площади;

М ± 2о соответствует 95 % (точно - 95,44 %) площади;

М±3а соответствует 100 % (точно - 99,72 %) площади.

Единичное нормальное распределение устанавливает четкую взаимосвязь стандартного отклонения и относительного количества случаев в генеральной совокупности для этого распределения. Например, зная свойства единичного нормального распределения, мы можем ответить на следующие вопросы. Какая доля генеральной совокупности имеет выраженность свойства от до +а. Или какова вероятность того, что случайно выбранный представитель генеральной совокупности будет иметь выраженность свойства, на За превышающую среднее значение. В первом случае ответом будет 68,26 % всей генеральной совокупности, так как отклонение от среднего значения X на а включает 0,6826 площади распределения. Во втором случае ответ - (100-99,72)/2 = 0,14%.

Полезно знать, что если распределение является нормальным, то:

  • 90 % всех случаев располагается в диапазоне значений М ± 1,64 о;
  • 95 % всех случаев располагается в диапазоне значений М± 1,96 а;
  • 99 % всех случаев располагается в диапазоне значений М±2,58 о.

Читатель наверняка уже обратил внимание на особенности распределения, представленного в таблице 1 и на рисунке 2. Большинство случаев расположены в центре ряда, а приближаясь к крайним значениям, происходит долгий плавный спад. На графике нет разрывов - нет классов, которые были бы отделены друг от друга. Кроме этого, график по обе стороны симметричен; это означает, что если его разделить вертикальной линией по центру, то получившиеся две половинки окажутся примерно одинаковыми. Такой график распределения своей формой похож на колокол, это так называемое «нормальное распределение», которое чаще всего встречается при измерениях индивидуальных различий. В своем идеальном виде нормальное распределение изображено на рисунке 3.

Понятие нормального распределения в статистике используется уже давно. Вероятность какого-либо события представляет собой частоту его наступления, зафиксированного очень большим количеством наблюдений. Эта вероятность представляет собой определенное соотношение, точнее, дробь, числителем которой является ожидаемый результат, а знаменателем - все возможные результаты. Таким образом, вероятность, или шансы, того, что две монеты выпадут одной и той же стороной, например решкой, будет один к четырем, или 1 / 4 . Это следует из того факта, что существует всего четыре возможные комбинации выпадения монет РР, РО, ОР, ОО, где Р - решка, а О - орел. Одна из четырех, РР, означает выпадение только решек. Вероятность выпадения двух орлов будет также составлять 1 / 4 , а вероятность выпадения решки какой-либо одной монеты при выпадении орла другой составит один к двум, или 1 / 2 . Даже если число монет увеличить, скажем, до 100, и количество возможных комбинаций станет очень большим, то мы по-прежнему сможем математически определить вероятность возникновения каждой комбинации, например, выпадения всех решек или 20 решек и 80 орлов. Эти вероятности, или ожидаемую частоту выпадений, можно изобразить графически описанным выше методом. Если число монет будет очень велико, то построенный график окажется колокольной формы, то есть графиком нормального распределения.


0 1 2 3 4 5 6 Количество выпадений решек

Рис. 4. Теоретическое (пунктир, линия) и фактически наблюдаемое (сплошная линия) распределение количества выпадений решек в 128 случаях подбрасывания шести монет. (Данные из Гилфорда, 10, с. 119.)


Рис. 3. График нормального распределения

На рисунке 4 можно найти теоретический и фактический графики, показывающие количество выпадения решек в 128 случаях подбрасывания шести монет. При каждом броске число решек, естественно, может варьироваться от 0 до 6. Чаще всего будет выпадать комбинация из трех решек (и трех орлов). Частота возрастает или понижается, когда число решек становится меньше или больше трех. На рисунке 4 теоретически вычисленные вероятности обозначены пунктирной линией, в то время как реальная частота, полученная в результате 128 последовательных подбрасываний шести монет, начерчена непрерывной линией. Необходимо заметить, что ожидаемые и фактически полученные результаты достаточно близки друг к другу. Чем больше количество наблюдений (или бросков), тем больше вероятность их совпадения.

Чем большее количество монет подбрасывается, тем ближе будет график теоретически ожидаемого распределения к графику нормальной вероятности. Говорят, что результаты, получаемые при подбрасывании монет или бросании игральных костей, зависят от «случайности». Под этим подразумевается, что результат определяется большим количеством независимых факторов, влияние которых учесть невозможно. Высота, с которой бросают монету или игральную кость, ее вес и размер, подкрутка, которую делает бросающий, и многие другие подобные факторы определяют в каждом отдельном случае, какой стороной упадет монета. График нормального распределения был впервые построен математиками Лапласом и Гауссом в связи с исследованиями ими игры случая, распределения отклонений в наблюдениях и других типов случайных изменений.

Уже в девятнадцатом веке бельгийский статистик Адольф Кутелет первым применил понятие нормального распределения к исследованию качеств человека (ср. 4). Кутелет обратил внимание на то, что определенные измерения роста, объема грудной клетки армейских призывников распределялись в соответствии с графиком вероятности колокольной формы. На основании сходства этого графика с данными человеческой изменчивости, он построил теорию, согласно которой такая человеческая изменчивость имеет место, когда природа стремилась воплотить «идеал», или норму, но в силу различных обстоятельств потерпела неудачу. Иными словами, человеческий рост, вес, уровень интеллектуального развития зависят от огромного количества независимых факторов, так что конечный результат окажется распределенным в соответствии с теорией вероятности. Опыт Кутелета по применению графика нормального распределения был переосмыслен и развит Гальтоном, чей вклад в дифференциальную психологию уже обсуждался нами в главе 1. У Гальтона график нормального распределения получил широкое и разнообразное применение, многие наработки были связаны с квантификацией и преобразованием данных, касающихся как индивидуальных, так и групповых различий.

Определить, является ли распределение, воспроизведенное в таблице 1 и на рисунке 2, «нормальным» можно путем применения соответствующих математических процедур. Несмотря на незначительные отклонения, этот график не отличается существенно от графика нормального распределения. Таким образом, мы можем сделать вывод, что его расхождение с нормой находится в пределах ожидаемых флуктуации, и считать его графиком нормального распределения. Многие распределения, открытые в дифференциальной психологии, так же соответствуют математическим вариантам нормального распределения, особенно когда они получаются в результате применения тщательно сконструированных измерительных приборов на больших репрезентативных выборках. В остальных случаях распределение может соответствовать нормальному лишь приблизительно. Оно может представлять собой некую непрерывность и быть более или менее симметричным, отражая то, что большинство индивидов находятся в центре ряда, а ближе к крайним значениям их количество постепенно и плавно снижается.

На рисунках 5-10 мы видим примеры графиков распределения, отражающих широкое разнообразие свойств человека. Эти распределения были выбраны специально, потому что они основаны на больших репрезентативных выборках, большинство из которых включало в себя 1000 и более случаев. Два графика, построенные для меньших групп, приводятся для того, чтобы показать распределение физиологических и личностных характеристик в таких областях, где данные для больших групп сравнительно скудные.


Рис. 5. Распределение роста у 8585 коренных англичан. (Данные из Юля и Кенделла, 34, с. 95.)


Рис. 6. Распределение качества, связанного с возможностями легких, у 1633 студентов мужского колледжа. (Данные из Харриса и др., 12, с. 94.)

Пример распределения слабоструктурированного качества дан на рисунке 5, который показывает рост в дюймах 8585 коренных англичан. Можно заметить, что график практически совпадает с математически нормальным графиком. На рисунке 6 представлен частотный график более функционального, физиологического качества, связанного с возможностями легких. Это измеряющийся в кубических сантиметрах объем воздуха, который выдувается из легких после максимально глубокого вдоха. Необходимые для построения графика измерения были сделаны на 1633 студентах мужского колледжа. Общее соответствие нормальному графику здесь так же очевидно.

Рисунок 7 связан с физиологическими измерениями, которые, как считается, имеют отношение к эмоциональным и личностным свойствам. На нем показано распределение показателей 87 детей по данным композиционного измерения автономного баланса. Высокие результаты в этом исследовании показывают функциональное преобладание парасимпатического отдела периферической нервной системы; низкие значения - функциональное преобладание ее симпатического отдела. Для психологов периферическая нервная система представляет особый интерес, он связан с той ролью, которую она играет в эмоциональном поведении.

График, представленный на рисунке 8 иллюстрирует распределение результатов теста на скорость и точность восприятия. Результатом является общее число вычеркнутых за одну минуту букв А на пестром листе. Этот тест считается просто тестом на внимание и восприятие, хотя скорость и координация движений здесь тоже имеют значение. В этой связи можно вспомнить данные теста на простое научение, зафиксированные в таблице 1 и на рисунке 2. Этот тест требовал применения кода, состоявшего из парных, не имеющих смысла слогов. Оба теста предлагались одной и той же группе, состоящей из 1000 студентов колледжа, и оба дали распределения, лежащие в пределах ожидаемых математических значений нормального графика.


Показатель автономного баланса

Рис. 7. Распределение значений оценок автономного баланса у 87 детей в возрасте от 6 До 12 лет. (Данные из Уингера и Эллингтона, 33, с. 252.)


Рис. 8. Количество вычеркнутых за одну минуту букв А 1000 студентами колледжа. (Данные из Анастази, 2, с. 32.)


Рис. 9. Измерение IQ репрезентативной выборки, состоящей из 2904 детей в возрасте от 2 до 18 лет, по шкале Стэнфорд - Бине. (Данные от Термена и Меррилла, 27, с. 37.)

На рисунке 9 мы видим типичные результаты применения интеллектуального теста в условиях большой выборки. Она показывает распределение IQ (Стэнфорд - Бине, редакция 1937 года) 2904 детей в возрасте от 2 до 18 лет. График показывает, что в наибольшем проценте случаев IQ испытуемых находится в пределах среднего интервала, от 95 до 104 баллов. Процент постепенно снижается до 1, поскольку IQ лишь очень малого числа детей находится в пределах между 35 и 44 и между 165 и 174 баллами. В данное распределение не включались данные по находящимся в интернатах слабоумным детям, выборка была также ограничена и по ряду других параметров. Так, в нее вошли только белые американцы с несколько преувеличенной (по сравнению с реальным населением страны) пропорцией городских жителей. Большую часть выборки составили учащиеся начальной школы, и хотя организаторы стремились к тому, чтобы обеспечить полноценное участие в тестировании групп старших и самых младших возрастов, их число едва ли соответствовало числу тестируемых учащихся начальной школы. Отметим, что весь ряд IQ для целостной популяции, на самом деле, как свидетельствуют данные, полученные разными исследователями, простирается от значений, близких к 0, до значений, несколько превышающих 200.



Рис. 10. Распределение 600 учениц колледжа по результатам теста Оллпорта на доминирование-подчинение. (Данные из Рагглза и Оллпорта, 24, с. 520.)

В качестве последней иллюстрации рассмотрим рисунок 10, содержащий распределение результатов широко используемого личностного опросника. График показывает распределение 600 учениц колледжа по результатам теста Оллпорта на доминирование-подчинение. Целью этого личностного опросника было исследование стремления индивида доминировать над другими членами группы в повседневной жизни или подчиняться им. Рисунок 10 показывает, что, несмотря на биполярное определение качества (противопоставление доминирования и подчинения), большинство результатов испытуемых располагаются вокруг середины шкалы и распределение приближается к нормальному. Иными словами, биполярное наименование качества не должно вводить нас в заблуждение, что индивидов можно классифицировать на доминирующих и подчиняющихся. Как и другие измеряемые свойства человека, данное личностное качество имеет множество степеней проявления; и при этом большинство людей относятся к промежуточным типам.


Рис. 11. Скошенное распределение

Большинство экспериментальных исследований, связанных с измерениями, в том числе и в психологии, способных принимать практически любые значения в заданном интервале (что зависит от величины выборки) описываются моделью случайных непрерывных величин и соответственно – непрерывном распределении.

Одним из непрерывных распределений, имеющим основополагающую роль в математической статистике является нормальное (или Гауссово) распределение. Нормальное распределение является самым важным в статистике, что объясняется рядом причин:

    Многие экспериментальные наблюдения можно успешно описать с помощью близкого к нормальному распределению.

    Большинство распределений, связанных со случайной выборкой, при увеличение объёма последней переходят к нормальному распределению.

    Нормальное распределение обладает рядом благоприятных математических свойств, во многом обеспечивающих его широкое применение в статистике:

    1. Имеет колоколообразную форму, симметричную относительно точки M=X,cточками перегиба, абсциссы которых отстоят отMна +.

      Для нормального распределения математическое ожидание, дисперсия и стандартное отклонение генеральной совокупности равно (сигма).

      нормальное распределение полностью определяется двумя параметрами: математическим ожиданием (средним) и стандартным отклонением.

      мода, медиана и среднее арифметическое нормального распределения совпадают и равны математическому ожиданию M.

Исходя из того, что нормальное распределение полностью определяется двумя параметрами Mи(сигма), то при измерении этих параметров можно получить целое семейство нормальных кривых. Чтобы избежать неудобств, связанных с расчётами для каждого конкретного случая, в психологии используют так называемоенормированное (или чаще стандартное)нормальное распределение , которое и применяется для стандартизации шкал (психометрических линеек).

Нормированное нормальное распределение, имея параметры M= 0 и= 1, имеет колоколообразную форму.

Особенностью данной кривой является то, что площадь под кривой имеет постоянное значение (как показано на рисунке 1). Эта особенность является основной для стандартной интерпретации в эмпирических исследованиях с целью постановки психологического диагноза: так при изучении проявления, какого – либо признака, при попадании индивидуального результата в диапазон составляет 68,2% от всех случаев (т.е. у 68,2% испытуемых генеральной совокупности, степень проявления изучаемого признака будет находиться именно в этом диапазоне), что может оцениваться как среднее проявление изучаемого признака и интерпретироваться какнорма , в проявлении признака.

Рис.1. Процентное распределение случаев под нормальной кривой.

    1. Стандартизированные шкалы.

Показатели психометрических тестов, применяемых в практической психологии с целью постановки психологического диагноза, переводятся из первичных ("сырых" – не подвергнутых обработке) и полученных испытуемым по данному тесту в стандартные показатели, которые рассчитываются на основе линейного или нелинейного преобразования первичных показателей (при условии их распределения близкого к нормальному закону). При этом исторически сложилось наличие ряда наиболее распространённых стандартных показателей, связанных с особенностями преобразования, и отсюда – наличие "семейства" стандартных шкал, переводимых друг в друга и несводимых кZ-шкале.

Z-шкала образуется в результате центрирования, понимаемого как линейная трансформация величин признака, при которой средняя величина распределения становится равная нулю, и процедуры нормирования посредством среднеквадратических отклонений.

Z-шкала состоит из непрерывного континуумаZ-показателей, определяемых в виде разности между индивидуальными первичными результатами и средним значением для генеральной совокупности, делённые на стандартное отклонение распределения.

где X– необработанные, сырые баллы,

– Среднее,

 – стандартное отклонение.

При этом полученная Z-шкала будет иметь среднюю точкуM=0 и единицу измерения (масштаб) 1стандартного (единичного) нормального распределения как показано на рисунке 2.

Z-показатель может принимать как положительные, так и отрицательные значения. Большинство случаев (99,72%) значения показателей уменьшаются в пределах -3+3 и могут принимать любые значения. К достоинствамZ-показателя относится простота интерпретации и сравнения индивидуальных результатов: чем больше показатель, тем дальше от среднего (нормы) он может находиться, при этом знак указывает (+) – выше среднего; (-) – ниже среднего. Но недостатки, особенно в области прикладной (практической) психологии, к которым относят: сложность интерпретации для испытуемого (клиента), крупность масштаба единиц измерения, оперирование отрицательными и положительными величинами, побудили разработчиков тестов использовать нормализованные преобразования по форме:
, гдеZp– преобразованный стандартный показатель;b– стандартное отклонение преобразованного распределения;Z–Z-показатель;A– среднее значение преобразованного распределения. Такой переход правомерен, так как стандартная шкала представляет собой интервальную шкалу, что позволяет выполнить линейные преобразования, при условии, что константыbиA– действительные числа.

Разберём процедуру получения преобразованных стандартных показателей на ряде примеров:

Было проведено эмпирическое исследование уровня уверенности в себе (опросник Рейзаса – 0-90) на выборке учителей (50 человек) из различных школ г. Н. Новгорода. В результате первичной статистической обработки были получены результаты:

    Распределение первичных результатов ("сырых баллов") по форме близко к нормальному распределению (после процедур группировки и анализа кривой распределения – полигона частот).

    Вычислены характеристики для данной выборки –

Предлагается провести линейное преобразование и определить для различных шкал значение одного первичного результата X=45 ("сырой балл" одного из испытуемых).

    Преобразование в Z-показатель производится по формуле:

где Z– стандартныйZ-показатель;

X– первичный результат тестового измерения;

M x – средняя величина результатов выборки (в нашем случае медианаMe);

S x – стандартное отклонение для данной выборки. Найдите полученный показатель наZ-шкале (рисунок 2) и сделайте вывод о проявлении изучаемого признака у данного испытуемого.

    Преобразование в T-шкалу для опросников Мак-Колла производится по уже известной формуле (Zp=A+bZ), подставляя вместо константA=M = 50;b== 10 – полученные Мак-Коллом в результате нормализации эмпирических распределений собственных опросников, переведём результат испытуемого (X=45) в стандартныеT-баллы по формуле:

Таким образом, результат – 25 T-баллов (стандартных баллов).

    Преобразование в шкалу станайнов Гилфорда (англ.standardnine– стандартная девятка), где оценкам присваивают целые значения от 1 до 9, приM = 5, = 2 производятся по формуле:

В данном случае результат испытуемого будет 1 станайн (т.к. полученный результат C = 0 попал в интервал 1-го станайна).

Данная C-шкала обладает таким замечательным свойством (см. рисунок 2), что в 1 и 9 станайны попадает по 4% испытуемых всей выборки, во 2 и 8 станайны – по 7%, и т.д. Таким образом, при ранжированном упорядочивании в сторону возрастания первичных тестовых результатов и условии их нормального (или близкому к нормальному) распределения первым 4% данных присваивается 1 станайн, последующим 7% данных – 2-ой станайн, следующим 12% данных – 3-й станайн и т.д., таким образом, данные будут упорядочены в шкалу, соответствующую стандартным частотам распределения результата.

    Преобразование в шкалу стенов Кэттела (от англ.standardten– стандартная десятка) для опросника 16PF, где оценкам присваивают целые значения от 1 до 10, приM = 5;= 2 производят по формуле:

В данном случае результат испытуемого попадает в интервал 1-го стена.

В тестировании интеллекта используются нормализованные шкалы:

    Шкала Векслера представленнаяIQ-стандартными баллами:

    Шкала структуры интеллекта Амтхауэра по формуле:

С целью интерпретации данных для работников образования представляет интерес шкала Линерта:

    Шкала школьных оценок Линерта:

Рис.2. Нормальная кривая и стандартные показатели.

Если мы применяем параметрические методы (к примеру, формулу для расчета коэффициента корреляции Браве-Пирсона или дисперсионный анализ) которые следует применять только тогда, когда известно или доказано, что распределение признака является нормальным (Суходольский Г.В., 1972; Шеффе Г., 1980 и др.), то в этом случае нам необходимо убедиться в нормальности распределения результативного признака. Нормальность распределения результативного признака можно проверить путем расчета показателей асимметрии и эксцесса и сопоставления их с критическими значениями (Пустыльник Е.И., 1968, Плохинский Н.А.. 1970 и др.). Рассмотрим применение метода Е.И. Пустыльника на примере.
Действовать будем по следующему алгоритму:
рассчитаем критические значения показателей асимметрии и эксцесса по формулам Е.И. Пустыльника и сопоставим с ними эмпирические значения;
если эмпирические значения показателей окажутся ниже критических, сделаем вывод о том, что распределение признака не отличается от нормального.
Расчет эмпирических показателей асимметрии и эксцесса будем производить по формулам данным ранее.
Сначала сделаем расчет промежуточных значений, который удобно выполнять поэтапно, занося данные в таблицу (Таблица 3.6.).
Таблица 3.6. Расчет промежуточных значений № (*.¦ - *) (х. - х)2 (*, - *) (Л, -*)4 1 и 0,94 0,884 0,831 0,781 2 13 2,94 8,644 25,412 74,712 3 12 1,94 3,764 7,301 14,165 4 9 -1,06 1,124 -1,191 1,262 5 10 -0,06 0,004 -0,000 0,000 6 11 0,94 0,884 0,831 0,781 7 8 -2,06 4,244 -8,742 18,009 8 10 -0,06 0,004 -0,000 0,000 9 15 4,94 24,404 120,554 595,536 10 14 3,94 15,524 61,163 240,982 11 8 -2,06 4,244 -8,742 18,009 12 7 -3,06 9,364 -28,653 87,677 13 10 -0,06 0,004 -0,000 0,000 14 10 -0,06 0,004 -0,000 0,000 15 5 -5,06 25,604 -129,554 655,544 16 8 -2,06 4,244 -8,742 18,009 Суммы 161 102,944 30,468 1725,467
Для расчетов в таблице, необходимо значение среднего арифметического, которое вычисляется по формуле:
Л = - -¦¦¦-
п
где Xj - каждое наблюдаемое значение признака;
п - количество наблюдений. В данном случае:
* = 10,06 16
Стандартное отклонение (сигма) вычисляется по формуле:
п- 1
где х^ - каждое наблюдаемое значение признака; х - среднее значение (среднее арифметическое); п " количество наблюдений. В данном случае:
ст =
,02"944 = Д893 = 2,62
V 16-1
Подставляя в формулы для расчета А и Е полученные значения n, с и соответствующие
значения из таблицы, получаем:
. +30,468 Л _
А = г = +0,106
16 2,62
16 2,62
Теперь рассчитаем критические значения для показателей А и Е по формулам Е.И. Пустыльника:
V(« + l)-(n + 3)
Ар =3"- V "
Е«Р ~5 Л|/_ . ,42
24 я (я - 2) (я - 3) (и + I)2 (я + 3) (и + 5) где п - количество наблюдений.
В данном случае:
(16 + 1) (16 + 3) V 323
I *qrrr
89
-кр
I 2416-(16-2) (16-3) _5 169888 ?кр_5"^(16 + 1)2-(16+3)(16 + 5) V115311
Аамп=0,Ю6
"-эмп^-гл-кр
Еэмп -0,71 1 Еэмп^Екр
Так как эмпирические значения А и Е меньше критических значений, то можно сделать следующий вывод: распределение результативного признака в данном примере не отличается от нормального распределения.

Случайные величины связаны со случайными событиями. О случайных событиях говорят тогда, когда оказывается невозможным однозначно предсказать результат, который может быть получен в тех или иных условиях.

Предположим, мы бросаем обыкновенную монету. Обычно результат этой процедуры не является однозначно определенным. Можно лишь с уверенностью утверждать, что произойдет одно из двух: либо выпадет "орел", либо "решка". Любое из этих событий будет случайным. Можно ввести переменную, которая будет описывать исход этого случайного события. Очевидно, что эта переменная будет принимать два дискретных значения: "орел" и "решка". Поскольку мы заранее точно не можем предугадать, какое из двух возможных значений примет эта переменная, можно утверждать, что в этом случае мы имеем дело со случайными величинами.

Предположим теперь, что в эксперименте мы проводим оценку времени реакции испытуемого при предъявлении какого-либо стимула. Как правило, оказывается, что даже тогда, когда экспериментатор предпримет все меры к тому, чтобы стандартизировать экспериментальные условия, минимизировав или даже сведя к нулю возможные вариации в предъявлении стимула, измеренные величины времени реакции испытуемого все равно будут различаться. В таком случае говорят, что время реакции испытуемого описывается случайной величиной. Поскольку в принципе в эксперименте мы можем получить любое значение времени реакции – множество возможных значений времени реакции, которые можно получить в результате измерений, оказывается бесконечным, – говорят о непрерывности этой случайной величины.

Возникает вопрос: существуют ли какие-либо закономерности в поведении случайных величин? Ответ на этот вопрос оказывается утвердительным.

Так, если провести бесконечно большое число подбрасываний одной и той же монеты, можно обнаружить, что число выпадений каждой из двух сторон монеты окажется примерно одинаковым, если, конечно, монета не фальшивая и не гнутая. Чтобы подчеркнуть эту закономерность, вводят понятие вероятности случайного события. Ясно, что в случае с подбрасыванием монеты одно из двух возможных событий произойдет непременно. Это обусловлено тем, что суммарная вероятность этих двух событий, иначе называемая полной вероятностью, равна 100%. Если предположить, что оба из двух событий, связанных с испытанием монеты, происходят с равными долями вероятности, то вероятность каждого исхода в отдельности, очевидно, оказывается равной 50%. Таким образом, теоретические размышления позволяют нам описать поведение данной случайной величины. Такое описание в математической статистике обозначается термином "распределение случайной величины" .

Сложнее обстоит дело со случайной величиной, которая не имеет четко определенного набора значений, т.е. оказывается непрерывной. Но и в этом случае можно отметить некоторые важные закономерности ее поведения. Так, проводя эксперимент с измерением времени реакции испытуемого, можно отметить, что различные интервалы длительности реакции испытуемого оцениваются с разной степенью вероятности. Скорее всего, редко, когда испытуемый будет реагировать слишком быстро. Например, в задачах семантического решения испытуемым практически не удается более или менее точно реагировать со скоростью менее 500 мс (1/2 с). Аналогично маловероятно, что испытуемый, добросовестно следующий инструкциям экспериментатора, будет сильно затягивать свой ответ. В задачах семантического решения, например, реакции, оцениваемые более чем 5 с, обычно рассматриваются как недостоверные. Тем не менее со 100%-ной уверенностью можно предполагать, что время реакции испытуемого окажется в диапазоне от О до +со. Но эта вероятность складывается из вероятностей каждого отдельного значения случайной величины. Поэтому распределение непрерывной случайной величины можно описать в виде непрерывной функции у = f (х ).

Если мы имеем дело с дискретной случайной величиной, когда все возможные ее значения заранее известны, как в примере с монетой, построить модель ее распределения, как правило, оказывается не очень сложным. Достаточно ввести лишь некоторые разумные допущения, как мы это сделали в рассматриваемом примере. Сложнее обстоит дело с распределением непрерывных величии, принимающих заранее неизвестное число значений. Конечно, если бы мы, например, разработали теоретическую модель, описывающую поведение испытуемого в эксперименте с измерением времени реакции при решении задачи семантического решения, можно было бы попытаться на основе этой модели описать теоретическое распределение конкретных значений времени реакции одного и того же испытуемого при предъявлении одного и того же стимула. Однако такое не всегда оказывается возможным. Поэтому экспериментатор бывает вынужденным предположить, что распределение интересующей его случайной величины описывается каким-либо уже заранее исследованным законом. Чаще всего, хотя это, возможно, и не всегда оказывается абсолютно корректным, для этих целей используется так называемое нормальное распределение, выступающее в качестве эталона распределения любой случайной величины независимо от ее природы. Это распределение впервые было описано математически еще в первой половине XVIII в. де Муавром.

Нормальное распределение имеет место тогда, когда интересующее нас явление подвержено влиянию бесконечного числа случайных факторов, уравновешивающих друг друга. Формально нормальное распределение, как показал де Муавр, может быть описано следующим соотношением:

где х представляет собой интересующую нас случайную величину, поведение которой мы исследуем; Р – значение вероятности, связанное с этой случайной величиной; π и е – известные математические константы, описывающие соответственно отношение длины окружности к диаметру и основание натурального логарифма; μ и σ2 – параметры нормального распределения случайной величины – соответственно математическое ожидание и дисперсия случайной величины х.

Для описания нормального распределения оказывается необходимым и достаточным определение лишь параметров μ и σ2.

Поэтому если мы имеем случайную величину, поведение которой описывается уравнением (1.1) с произвольными значениями μ и σ2, то можем обозначить его как Ν (μ, σ2), не держа в памяти всех деталей этого уравнения.

Рис. 1.1.

Любое распределение можно представить наглядно в виде графика. Графически нормальное распределение имеет вид колоколообразной кривой, точная форма которой определяется параметрами распределения, т.е. математическим ожиданием и дисперсией. Параметры нормального распределения могут принимать практически любые значения, которые оказываются ограничены лишь используемой экспериментатором измерительной шкалой. В теории значение математического ожидания может равняться любому числу из диапазона чисел от -∞ до +∞, а дисперсия – любому неотрицательному числу. Поэтому существует бесконечное множество различных видов нормального распределения и соответственно бесконечное множество кривых, его представляющих (имеющих, однако, сходную колоколообразную форму). Понятно, что все их описать невозможно. Однако, если известны параметры конкретного нормального распределения, его можно преобразовать к так называемому единичному нормальному распределению, математическое ожидание для которого равно нулю, а дисперсия – единице. Такое нормальное распределение называют еще стандартным или z-распределением. График единичного нормального распределения представлен на рис. 1.1, откуда очевидно, что вершина колоколообразной кривой нормального распределения характеризует величину математического ожидания. Другой параметр нормального распределения – дисперсия – характеризует степень "распластанности" колоколообразной кривой относительно горизонтали (оси абсцисс).